The leading-edge vortex and quasisteady vortex shedding on an accelerating plate
نویسندگان
چکیده
منابع مشابه
The leading-edge vortex and quasisteady vortex shedding on an accelerating plate
A computational inquiry focuses on leading-edge vortex LEV growth and shedding during acceleration of a two-dimensional flat plate at a fixed 10°–60° angle of attack and low Reynolds number. The plate accelerates from rest with a velocity given by a power of time ranging from 0 to 5. During the initial LEV growth, subtraction of the added mass lift from the computed lift reveals an LEV-induced ...
متن کاملThe Leading-Edge Vortex of Swift Wings
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. A well documented example of an LEV is that generated by aircraft with highly swept, delta shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary signi...
متن کاملOptimized Control of Vortex Shedding from an Inclined Flat Plate
Optimal control theory is combined with the numerical simulation of an incompressible viscous flow to control vortex shedding in order to maximize lift. A two-dimensional flat plate model is considered at a high angle of attack and a Reynolds number of 300. Actuation is provided by unsteady mass injection near the trailing edge and is modeled by a compact body force. The adjoint of the lineariz...
متن کاملFeedback control of vortex shedding from an inclined flat plate
Openand closed-loop control of vortex shedding in two-dimensional flow over a flat plate at high angle of attack is numerically investigated at a Reynolds number of 300. Unsteady actuation is modeled as a body force near the leading or trailing edge and is directed either upstream or downstream. For moderate angles of attack, sinusoidal forcing at the natural shedding frequency results in phase...
متن کاملThe fish tail motion forms an attached leading edge vortex.
The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2010
ISSN: 1070-6631,1089-7666
DOI: 10.1063/1.3327282